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We examine the problem of reconstructing input-output systems from time series data. Although the method
of delays has already been used in the case where both input and output are measured, in some cases, the inputs
cannot be measured, and hence, the method of delays cannot be used. On the basis of ideas derived from
existing embedding theorems, we propose to build models by using delays of multivariate observations of
output data. Assuming that the inputs are few, we use several observations for obtaining information about the
inputs, and the remaining observations for obtaining information about the state of the system. Numerical
examples on a discrete map and a continuous-time system show that input-output systems can indeed be
identified by using multivariate observations of output data only. We also discuss the application of this method
to the analysis of coupled systems or complex networks, by partitioning such large systems and analyzing each
subsystem separately. The models used in this paper are nonpredictive models; thus, they cannot be used to
predict the future behavior of the system. However, since they model the dynamics of the system, they have
other possible applications such as change detection and noise reduction.
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I. INTRODUCTION

In the analysis of experimental time series originating
from low-dimensional nonlinear dynamical systems, the
method of delays �1� is widely used for reconstructing a state
space in which the dynamics can be viewed. This method is
theoretically justified by Takens’s embedding theorem �2,3�.
Thus, for an autonomous deterministic dynamical system, a
scalar time series can contain sufficient information to recon-
struct a state space that is equivalent to the state space of the
original dynamical system. One can then use the reconstruc-
tion, for example, to estimate dynamical invariants of the
system, to predict future values of the time series, to remove
noise, or to control the system �see �4,5��.

Since Takens’s theorem applies only to autonomous deter-
ministic systems, strictly speaking, it cannot be directly ap-
plied to a measured time series because of the presence of
noise or an external input. First, signals obtained from real
systems are affected by observational noise, which modifies
the measured variable. A second type of noise is dynamical
noise, which acts on the internal state of the systems; such
systems are known as stochastic systems. Finally, in many
fields, input-output systems are considered instead of autono-
mous systems.

Many studies have been carried out in order to overcome
these difficulties. The effect of observational noise on the
reconstruction of a state space has been well studied �6�. The
applicability of such reconstruction to input-output systems
was conjectured by Casdagli �7�, and indeed, several embed-
ding theorems were later proved for deterministically forced
systems �8� and for stochastic systems and input-output sys-
tems �9�. See �10� for a review of these theorems.

Another question that recurs in the literature, but for
which embedding theorems have not yet been stated or

proved �11�, is the use of multivariate observations in the
reconstruction of a state space �12–16�. If the dynamics of a
dynamical system can be reconstructed from a scalar vari-
able, then in certain cases, the reconstruction will be intu-
itively improved by the use of several variables. Muldoon et
al. �17� showed that by performing many simultaneous ob-
servations such that an embedding of the original state space
becomes automatic, even the noise can be reconstructed.

In this paper, on the basis of ideas derived from the theo-
rem given by Muldoon et al. �17� and from Takens’s theorem
for stochastic systems �9�, we propose to build models for
low-dimensional deterministic input-output systems with un-
observed inputs. We assume that the inputs are few, and we
separate multivariate observations into primary observations
and secondary observations. The secondary observations are
used for obtaining information about the input, while delays
of the primary observations are used for obtaining informa-
tion about the state of the system.

In Sec. II, we review some of the existing embedding
theorems. In Sec. III, we compare our approach to the exist-
ing embedding theorems and propose some theoretical argu-
ments for the existence of a functional relation between de-
layed multivariate observations. In Sec. IV, we verify the
functional relations of Sec. III by analyzing three numeri-
cally simulated systems: a discrete map with an external in-
put, a continuous-time system with an external input, and
finally two coupled continuous-time systems. We evaluate
the quality of the reconstruction on the basis of predictability.
In Sec. V, we summarize and discuss this research and its
possible applications.

II. PHASE SPACE RECONSTRUCTION

A. Takens’s embedding theorem

Consider a deterministic finite-dimensional dynamical
system whose state at time t is represented by a vector x on*evan.monroig@m4x.org
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a compact m-dimensional manifold M. The time evolution
of the system is given by a map f t :M→M, so that if at
time t0 the system is in state x0, then at time t+ t0 its state is
x�t+ t0�= f t�x0�. Such a map is usually given by the solution
of a differential equation on M.

In most applications, the state x is observed not directly
but through a scalar observable y that is related to x by an
observation function � :M→R. The system is observed at
discrete times tk= t0+k� �k=0,1 , . . .� with a sampling interval
� in order to obtain a scalar time series �yk�,

yk = ��xk� , �1�

where xk= fk��x0�. The states at discrete times t0 , t1 , . . . are
related by the equation

xk+1 = f�xk� , �2�

where the notations were simplified by rescaling the time so
that �=1 and f = f�.

On the basis of the observed scalar time series �yk�, it is
possible to reconstruct a multidimensional state space that is
equivalent to the state space of the original system; from
such a state space, one can then build predictive models. One
way of doing so is to use the method of delays �1�: use
successive delays of the time series �yk� to build a new
d-dimensional variable vk,

vk = �yk,yk+1, . . . ,yk+d−1� .

The integer d is called embedding dimension, and vk is called
reconstruction vector or delay vector.

From Eqs. �1� and �2�, it follows that vk and xk are related
by the equation

vk = ��xk� , �3�

where � :M→Rd is called delay map or reconstruction map
and is defined as follows:

��x� = � f ,��x� = ���x�,�„f�x�…, . . . ,�„fd−1�x�…� .

Takens’s embedding theorem �2,3,10� then shows that for d
�2m+1 and for typical f and � of class C2, the delay map �
is a smooth coordinate change between the original state
space, where xk lies, and the reconstructed state space, where
vk lies.

To be precise, the delay map is then an embedding, i.e., it
maps M diffeomorphically onto its image: it is one-to-one
and continuously differentiable, and its inverse defined on
f�M� is also continuously differentiable. For a precise state-
ment of Takens’s theorem, refer to �10�.

Since � is an embedding, a predictive relation can be
obtained in the following manner. The coordinate change �
can be used to transport the map f , which becomes F=�
� f ��−1 in the reconstructed coordinates, where the symbol
“�” denotes function composition. Then, from Eq. �3�, we
know that vk=��xk� is in the image of �. Thus, F can be
applied to it;

F�vk� = � � f � �−1�vk� ,

=� � f � �−1 � ��xk� by Eq. �3�,

=� � f�xk� ,

=��xk+1� by Eq. �2�,

=vk+1 by Eq. �3�.

By rewriting the above equation in terms of the observed
time series �yk�, we can express the equations of dynamics of
vk as follows:

�yk+1,yk+2, . . . ,yk+d� = F�yk,yk+1, . . . ,yk+d−1� .

Here, the first d−1 components of F are a trivial shift of
coordinates, and hence, if we write the last component of F
as G :��M�→R, we obtain the following predictive rela-
tion:

yk+d = G�yk,yk+1, . . . ,yk+d−1� .

The function G can be estimated from observed data;
thus, the future of the time series �yk� can be predicted.

B. Generalizations to forced systems

We now consider a discrete-time system that is excited by
an external force, namely, a forced system. The state at dis-
crete time k is represented by a vector xk on a compact
m-dimensional manifold M, and a multidimensional exter-
nal input uk, which lies on a compact n-dimensional mani-
fold N, is added.

The input u is considered to be a stochastic input or the
state of a dynamical system that is coupled to the considered
system. If the input is the state of a low-dimensional deter-
ministic system, such that, for example, uk+1=g�uk�, then by
using the methods of Stark �8�, it is possible to simulta-
neously reconstruct both systems and obtain a predictive re-
lation; this case is not considered here. Also, a nonstationary
input is not considered.

The evolution of the state of the system is given by a map
f :M�N→M so that the state at discrete time k+1 is re-
lated to the state and the input at discrete time k as follows:

xk+1 = f�xk,uk� . �4�

As before, we observe a scalar value yk, which is related to
the state xk by an observation function � :M→R.

The question we now ask is whether we can reconstruct a
state space equivalent to the original one, given only the
input and output time series �uk� and �yk�. The purpose of this
reconstruction is to obtain an input-output model of the sys-
tem.

Stark et al. �9� proved an embedding theorem that is ap-
plicable to a wide class of stochastic dynamical systems as
well as to input-output systems. They called this theorem
Takens’s theorem for stochastic systems. For d�2m+1, for
typical f and �, and for typical input sequence u, the corre-
sponding delay map is an embedding. Further, we have the
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following predictive relation, which was conjectured by Cas-
dagli �7�:

yk+d = G�yk,yk+1, . . . ,yk+d−1,uk,uk+1, . . . ,uk+d−1� . �5�

However, G is only defined for almost every uk ,uk+1 , . . . ,
uk+d−1. Hence, it is not known whether G is regular with
respect to the input terms �10�.

Muldoon et al. �17� have a different approach; they use
multivariate observations. Assume that the observation func-
tion � :M→Rp gives p independent observables, with p
�2m+1. Then, on the basis of Whitney’s embedding theo-
rem �18�, � is generically an embedding. Thus, from one
multivariate observation yk, information about the state xk
can be obtained. The idea developed by Muldoon et al. �17�
is to combine this observation with its successor yk+1, in
order to obtain information about the input uk. More explic-
itly, the reconstruction map � f ,� :M�N→R2p defined by

� f ,��x,u� = ���x�,�„f�x,u�…�

is an embedding �26�. In other words, knowledge of the state
xk �through yk� and its successor xk+1 �through yk+1� gives us
information about the input uk. However, this theorem cannot
be directly used to derive a predictive relation for future
observations. In Sec. III, we use the main idea of this theo-
rem in order to build a functional relation that does not rely
on knowing the inputs.

III. FORCED SYSTEMS WITH UNKNOWN INPUTS

In Sec. II, we reviewed two theorems that are related to
Takens’s embedding theorem and are applicable to forced
systems. The theorem by Stark et al. �9� allows the recon-
struction of an input-output system, and, by assuming the
knowledge of the input, we may use this theorem to obtain
the predictive relation given in Eq. �5�. The theorem by Mul-
doon et al. �17� allows the reconstruction of an input-output
system by using multivariate observations; however, this
theorem does not lead to a predictive relation.

In the case of unmeasured input, we now argue that it is
possible to conciliate the two approaches and derive a func-
tional relation that uses multivariate observations but does
not require any knowledge of the input. Our approach is to
combine multivariate observations with the method of
delays.

We separate the problem into two cases. In the simpler
case, in which the entire state can be observed, we derive a
functional relation to estimate a part of the state. Then, in the
more general case for which the state is observed through
observation functions, we argue that a similar functional re-
lation, but one that involves delays, can be obtained.

Both functional relations are nonpredictive relations; thus,
they cannot be used to predict the future behavior of the
system. However, since they model the dynamics of the sys-
tem, they have other possible applications such as change
detection and noise reduction �see Sec. V�.

A. Observing the entire state

We first assume that the entire state is directly observed
and that the manifold M, where the state x lies, is itself a

Cartesian product, M=Ma�Mb, where Ma and Mb are
two compact manifolds of respective dimensions ma and mb.
Therefore, x may be decomposed as x= �xa ,xb�T, and Eq. �4�
can be expressed as follows:

xa,k+1 = fa�xk,uk� , �6a�

xb,k+1 = fb�xk,uk� , �6b�

where fa and fb are the corresponding components of the
map f . We call xa the primary state variables, and xb the
secondary state variables. Here, the word primary is used to
imply that these are the state variables of primary interest.
The secondary state variables are used to uniquely determine
the input, as explained below.

An important hypothesis of the theorem by Muldoon et al.
�17� is that the restriction fx� f�x , ·� :N→M is an embed-
ding for each x�M. This hypothesis allows the unique de-
termination of the input uk from one state xk and the next
state xk+1.

We consider a more restrictive hypothesis that states that
the restriction fb,x� fb�x , ·� :N→Mb is an embedding for
each x�M. By using Eq. �6b�, we have xb,k+1= fb,xk

�uk�, and
therefore, uk can be uniquely determined as follows:

uk = fb,xk

−1 �xb,k+1� .

Inserting the value for uk into Eq. �6a� leads to a functional
relation on the basis of which the primary state variables,
xa,k+1, can be inferred,

xa,k+1 = fa�xk,uk� = fa„xk, fb,xk

−1 �xb,k+1�… . �7�

Equation �7� can be rewritten as follows:

xa,k+1 = G�xa,k,xb,k,xb,k+1� . �8�

The function G can then be estimated from time series data,
and the next values of the primary state variables can be
estimated. To this end, G should be at least continuous,
which is the case, as the following lemma shows.

Lemma 1. Let Ma, Mb, and N be compact manifolds of
respective dimensions ma, mb, and n, and let M=Ma
�Mb. Let fa :M�N→Ma and fb :M�N→Mb be C1

maps such that fb,x� fb�x , ·� :N→Mb is an embedding for
each x�M. Then, the function G defined for x�M and y
� fb,x�N� by G�x ,y�= fa(x , fb,x

−1 �y�) is well defined and of
class C1.

Proof. Let � :M�N→M�Mb be the function defined
by ��x ,u�= (x , fb�x ,u�). By assumption fb is of class C1 and
for x�M, fb,x is an embedding; therefore, it is easy to show
that � is of class C1, is injective, and is an immersion. Thus,
since M and N are compact, � is an embedding, and its
inverse �−1 is defined on ��M�N� and is of class C1.
Then, G= fa ��−1, which is of class C1.

B. Using observation functions

We now suppose that the state is indirectly observed
through two observation functions �a :M→Rpa and �b :M
→Rpb. Thus, we have two time series �ya� and �yb� given at
discrete time k by
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ya,k = �a�xk�, yb,k = �b�xk� .

Here also, we call ya the primary observations, and yb the
secondary observations. Paralleling the reasoning of Sec.
III A, we assume that the restriction �b � fx��b � f�x , ·� :N
→Rpb is an embedding for each x�M. Thus, the knowl-
edge of xk and yb,k+1 uniquely determines the input uk. This
can be seen by replacing the expression of yb,k+1 using the
equation of dynamics �Eq. �4��,

yb,k+1 = �b�xk+1� = �b„f�xk,uk�… = �b � fxk
�uk� .

The previous equation shows that yb,k+1 is in the image of
�b � fxk

. Hence, by using our hypothesis, we can apply its
inverse ��b � fxk

�−1 and obtain

uk = ��b � fxk
�−1�yb,k+1� .

Inserting this expression of uk in the equation of dynamics
�Eq. �4�� then yields

xk+1 = f�xk,uk� = f„xk,��b � fxk
�−1�yb,k+1�… ,

which may be rewritten as

xk+1 = f̃�xk,yb,k+1� . �9�

Equation �9� can be viewed as the equation of dynamics
of a hypothetical input-output system whose state at discrete
time k is xk and whose input at discrete time k is yb,k+1. The
state of this input-output system is observed through the ob-
servation function �a. If Takens’s theorem for stochastic sys-
tems �9� could be applied to this system, then similarly to Eq.
�5�, the functional relation

ya,k = G�ya,k−1,ya,k−2, . . . ,ya,k−d,yb,k,yb,k−1, . . . ,yb,k−�d−1��

would hold for sufficiently large d.
However, Takens’s theorem for stochastic systems cannot

be applied to this case for the following reason. The theorem
requires that for fixed y, the evolution operator of the system,

i.e., the function f̃ y :M→M defined by

f̃ y�x� = f̃�x,y� = f„x,��b � fx�−1�y�… ,

be a diffeomorphism of M. From the expression of f̃ y, one

can see that �b( f̃ y�x�)=y. Thus, f̃ y�M���b
−1��y��. If f̃ y is a

diffeomorphism, the equality �b
−1��y��=M will hold. This

implies that �b will be a constant function on M, which is
contrary to our assumption that �b � fx is an embedding for
each x�M. The problem is that we are trying to use �b to
determine the input, and then �a to obtain information about
the entire state of the system, including the part that we
already know from �b.

Instead, assume as in Sec. III A that M is a product of
two manifolds M=Ma�Mb and that the function
fb�x , ·� :N→Mb is an embedding. Further, assume that �a
depends only on xa, that �b depends only on xb, and that �b
is an embedding of Mb. Then, Eq. �8� holds, and since �b is
an embedding, xb,k is uniquely determined by yb,k=�b�xb,k�,
and xb,k+1 is uniquely determined by yb,k+1=�b�xb,k+1�. There-
fore, Eq. �8� can be rewritten as follows:

xa,k+1 = f̃ a�xa,k,yb,k,yb,k+1� . �10�

With these assumptions, the aforementioned problem does
not occur. If Takens’s theorem for stochastic systems is ap-
plicable to the hypothetical dynamical system of Eq. �10�,
the following functional relation holds:

ya,k = G�ya,k−1,ya,k−2, . . . ,ya,k−d,yb,k,yb,k−1, . . . ,yb,k−d� .

�11�

IV. NUMERICAL SIMULATIONS

In order to verify the validity of the functional relations
derived in Sec. III A �Eq. �8�� and Sec. III B �Eq. �11��, in
Secs. IV B–IV D we introduce and analyze three systems: a
discrete map that is a discretized version of the Rössler sys-
tem by finite differences, the continuous-time Rössler sys-
tem, and two coupled continuous-time Rössler systems.

A. Methodology

For each system to be analyzed, we build models based
on multivariate observations and without any knowledge of
the input excitation. Further, we evaluate their estimation
errors on separate test data. In this section, we present the
models used and the methodology used for verifying the va-
lidity of the functional relations of Eqs. �8� and �11�.

In both cases, the data that we analyze come in the form
of a multivariate time series �yk�1�k�N consisting of p indi-
vidual channels yi,k, i=1, . . . , p. Each channel represents an
independent observation of the state of the system. Follow-
ing the notations of Sec. III B, some of these observations
will be primary observations, and others will be secondary
observations. From the primary observations, we select one
channel as the target variable zk. The target zk is the value
that we wish to estimate. For example, zk may be the first
channel of the observed time series, y1,k. The multivariate
time series �yk�1�k�N and associated target time series
�zk�1�k�N form a training set T. From the training data in T,
we wish to identify the functional relation

zk = G�vk� , �12�

where vk is a vector formed from delayed values of the ob-
served time series. We write the delay vector vk in a generic
form, using nonuniform delays �19�,

vk = �yi1,k−�1
,yi2,k−�2

, . . . ,yid,k−�d
� .

The reconstruction vector vk has d components. For the jth
component, we independently choose the channel ij and the
delay � j. Usually, we restrain � j �0 so that the target zk de-
pends only on past delays; Eq. �12� is then a predictive rela-
tion. However, in the case of an input-output system without
any knowledge of the input, as the relation from Eq. �11�
shows, one of the delays for the secondary outputs is 0.
Therefore, when modeling this relation, we allow � j =0 for
the channels chosen as secondary outputs. In this paper, we
take vk as the right-hand side of Eqs. �8� or �11�.

Once the reconstruction vector vk is chosen, we use the
measured time series for estimating the function G of Eq.
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�12�. To this purpose, we use a local linear approximation
�refer to �5�� defined as follows. For a test point ṽ with as-
sociated target z̃, define U	�ṽ� as the set of 	 points among
the reconstruction vectors vk of the training set T that are
closest to the test point ṽ in terms of the Euclidean distance.
The number of neighbors 	= �U	�ṽ�� is chosen beforehand.
Then, the local linear approximation of the target z̃ is

zpred = a · ṽ + b ,

where the coefficients a and b are obtained by least-squares
fitting over the set of neighbors U	�ṽ�.

In this paper, we perform all the local linear approxima-
tions by using neighborhoods containing 	=20 neighbors.
The optimal choice of 	 depends on the nonlinearity of the
equations, on the level of noise, and on the dimension of the
reconstruction vector vk. Thus, a fixed number of neighbors
is not optimal for all the systems that are studied in Secs.
IV B–IV D, and not optimal even for all the relations of a
given system. Several values were tried, and the choice 	
=20 is close to the optimal for the systems that are studied
here; for 	=10 or 	=50, the results were similar to the re-
sults shown in this paper, with the exception of cases for
which the dimension of the reconstruction vector is close to
	.

In order to estimate the accuracy of the model, we com-
pute the root mean square of the estimation error of the
model on a test time series, which we normalize by the stan-
dard deviation of the time series to be estimated,

E =
1


�z̃�
	 1

Ntest


k=1

Ntest

�z̃k − zpred,k�2. �13�

In the rest of the paper, we refer to E as normalized estima-
tion error, or simply as estimation error.

We now examine the source of the estimation errors. The
functional relation that we are modeling is in the form of Eq.
�12�. If it holds exactly, then as the number of points N in the
training time series increases, better and better approxima-
tions of the function G can be made, and the normalized
estimation error E will become closer and closer to zero. For
the local linear approximation, the scaling law is as follows:

E = O�N−2/D� , �14�

where N is the length of the training data, and, in the case of
autonomous systems, D is the information dimension of the
attractor �20,21�. For input-output systems, the same scaling
law is expected to hold, with D being the dimension of the
space in which the delay vector vk is constrained to lie �7�.
With a random input, the dimension is D=m+ni, where m is
the state-space dimension and ni the number of different in-
puts that appear in the delay vector.

Alternatively, if Eq. �12� does not hold exactly, then the
relation between the delay vector vk and the target variable zk
is of the form

zk = G�vk� + �k, �15�

where �k is the noise term, or innovation, that does not de-
pend on the variables included in vk. In this case, in the limit
of large N, the normalized estimation error E is limited by

the signal-to-noise ratio of the time series. For large N, the
normalized estimation error E is then approximately

E �

���

�z�

. �16�

In the present study, there may be several causes for not
being able to estimate the target zk: first, when the recon-
struction vector vk does not have a sufficient number of delay
terms, a functional relation does not exist between vk and zk;
second, when the function G is not continuously differen-
tiable, the local linear approximation fails; third, when the
input uk cannot be uniquely determined from the variables
included in the reconstruction vector vk, the proposed rela-
tions do not hold. It is the third case that we are looking for.
In this case, the innovation �k of Eq. �15� mainly consists of
a term depending on uk. Therefore, we can estimate the stan-
dard deviation of the innovation �k, and thus the normalized
estimation error E in the limit of large N, by estimating the
contribution to zk of the terms depending on uk in the equa-
tions of dynamics of the system.

In Secs. IV B–IV D, we use this reasoning for verifying
the validity of the functional relations. If, as the training data
length N is increased, the estimation error does not decrease
to a value below the threshold given by Eq. �16�, the input uk
cannot be uniquely determined as was supposed in Sec. III.
Conversely, an estimation error following the scaling law of
Eq. �14� indicates a successful model based on only the out-
put data.

In order to better discriminate between the two cases, we
need to make a further adjustment to the procedure. As Cas-
dagli �21� noted and as we also observed, very infrequent
bad estimations seem to affect the normalized estimation er-
ror E. Hence, for large N, Eq. �14� does not hold. Casdagli
�21� suggests discarding 10% of the worst estimations, or
alternatively, replacing the arithmetic mean in Eq. �13� by a
geometric mean. In this paper, we removed 10% of the worst
estimations when computing the normalized estimation error
E. The use of a geometric mean in Eq. �13� also gave similar
results, which we have not discussed here.

Finally, we would like to mention that no observational
noise was added to the simulated time series, and the time
series were normalized in the following manner so as to give
an equal weight to every channel when computing Euclidean
distances for the local linear approximations. Each channel
of the training time series was first normalized by subtracting
the sample mean and dividing by the sample standard devia-
tion so that each channel of the resulting time series has zero
mean and unit variance. Each channel of the test time series
was then normalized by the same factors �so that the chan-
nels of the test data may or may not have zero mean and unit
variance�. The reason for using the same factors is that the
behavior of the system, and hence the values estimated by
the models, depends on the amplitude of the data, i.e., on the
amplitude of the current states and of the inputs. By normal-
izing the training data and the test data by the same factors,
we can retain this dependency.
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B. Rössler map

1. Model and data

As the first example, we use a discretized version of the
Rössler system. We call this system Rössler map. The origi-
nal Rössler system �22� is given by

ẋ = − �y − z , �17a�

ẏ = �x + ay , �17b�

ż = b + z�x − c� . �17c�

We transform it into a forced system by adding an input
force u�t� on the first or second equations,

ẋ = − �y − z + 
xu�t� , �18a�

ẏ = �x + ay + 
yu�t� , �18b�

ż = b + z�x − c� . �18c�

We use the third finite difference model presented by Le-
tellier et al. �23�, and to it, we add the above input force.
Thus, the equations for the Rössler map that we use are as
follows:

xk+1 = xk − �1��yk + zk − 
xuk� , �19a�

yk+1 = �1 + a�2�yk + �2��xk+1 + 
yuk� , �19b�

zk+1 = b�3 + �1 + �3�xk+1 − c��zk. �19c�

This is a nonstandard finite difference model; �1, �2, and �3
are coefficients that depend on the integration time step h
and on the time scales of the system. Following Letellier et
al. �23�, we use the values

�1 = h, �2 =
1 − e−ah

a
, �3 =

1 − e−xch

xc
,

where xc= �−c+	c2−4ab� /2. We use the parameter values
�=1, a=0.432, b=2, c=4, an integration step h=0.1, and
input coefficients 
x=
y =1.

Several training time series of the Rössler map with N
data points were generated by evaluating Eq. �19� for N
+1000 time steps and discarding the first 1000 values, for
increasing values of N. Each time series had different ran-
domly chosen initial conditions and different external input
�uk�, which was unfiltered random Gaussian white noise with
zero mean and unit variance. In order to compute estimation
errors, a test time series with 1000 points was also generated
for each training time series.

2. Full state observation

We now examine Eq. �19� in more detail in order to un-
derstand which functional relations can be expected to hold.
First, observe that the terms xk, yk, zk, and uk appear in all
three equations, through the term xk+1 for Eqs. �19b� and
�19c�. Thus, the next states can be expressed as functions of
the immediately preceding input and states,

xk+1 = fx�xk,yk,zk,uk� , �20a�

yk+1 = fy�xk,yk,zk,uk� , �20b�

zk+1 = fz�xk,yk,zk,uk� . �20c�

The functions fx and fy are linear, while fz is nonlinear in that
it involves second-order polynomial terms because of the
presence of the term xk+1zk in Eq. �19c�. Therefore, local
linear approximations of fx and fy should have very low
estimation errors, while local linear approximations of fz
should follow the scaling law of Eq. �14�.

Consider the case of a full state observation. We assume
that the hypothesis of Sec. III A holds so that if we have the
full knowledge of the state �xk ,yk ,zk�, only one of the states
xk+1, yk+1, or zk+1 is necessary to uniquely determine the input
uk. Considering successively x, y, or z as the secondary vari-
able, we thus define six functional relations on the basis of
Eq. �8�,

yk+1 = Gy1�xk+1,xk,yk,zk� , �21a�

zk+1 = Gz1�xk+1,xk,yk,zk� , �21b�

xk+1 = Gx1�yk+1,xk,yk,zk� , �21c�

zk+1 = Gz2�yk+1,xk,yk,zk� , �21d�

xk+1 = Gx2�zk+1,xk,yk,zk� , �21e�

yk+1 = Gy2�zk+1,xk,yk,zk� . �21f�

By using Eq. �19�, we can derive analytical expressions for
the above functions as follows: Gy1 and Gx1 are completely
linear; Gz1 and Gz2 are polynomial; and Gx2 and Gy2 are
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FIG. 1. Normalized estimation error for a local linear approxi-
mation of the Rössler map as a function of the training data length
N. The functions fx, fy, Gx1, and Gy1 were not included since their
estimation error was of the order of the round-off error of floating-
point computations. For each value of N, the mean and the standard
deviation for ten sets of training and test data are shown.

MONROIG, AIHARA, AND FUJINO PHYSICAL REVIEW E 79, 056208 �2009�

056208-6



rational functions with a pole at zk=0. �The time series that
were generated for the Rössler map do not include state-
space regions with zk=0.�

For each of the functions of Eq. �21� to be approximated,
Fig. 1 shows the normalized estimation error E as a function
of the training data length N. As the estimation errors of local
linear approximations of the functions fx, fy, Gx1, and Gy1
were as expected on the order of the round-off error of
floating-point computations, their values were not included.
For the sake of comparison, the estimation errors of local
linear approximations of fz are also shown in Fig. 1. In Fig.
1, since both axes are shown on a logarithmic scale, it is
apparent that all estimation errors decrease as a negative
power of the data length N, following the scaling law of Eq.
�14�.

We further validate the estimation errors by comparing
them to thresholds as defined in Sec. IV A. For each state
variable xk, yk, and zk, the corresponding threshold was com-
puted in the following manner. Assume that the noise �k
mainly consists of an additive term depending on the input
uk, and approximate it by an estimate of the contribution of
the terms depending on uk in the equations of dynamics. For
example, when estimating xk+1, the noise term �x,k is ap-
proximated by

�x,k = fx�xk,yk,zk,uk� − fx�xk,yk,zk, ūk� ,

where the bar represents the sample average. The threshold is
then obtained by dividing the standard deviation of �x by that
of x as per Eq. �16�. The resulting thresholds are shown in
Table I. All estimation errors of Fig. 1 are well below the
thresholds for training time series with more than 10 000
points.

3. Observation functions

We now consider the case of Sec. III B, for which the
state is observed through two observation functions �a and
�b. Since the entire state is not observed, the functional re-
lation of Sec. III A cannot be used. For several choices of
observation functions �a and �b and for increasing d, we
evaluate the quality of local linear approximations of the
functional relation of Eq. �11�.

Table II contains the definition of the pairs ��a ,�b� of
observation functions that were considered as well as the
thresholds computed in the same manner as that described in
Sec. IV B 2, and the normalized estimation errors obtained
for local linear approximations of Eq. �11� using training
time series with N=100 000 points.

For d�2, the estimation error in all cases is at least close
to one order smaller than the corresponding threshold, which
indicates that for d�2, the functional relations hold in all the
cases listed in Table II.

Figures 2 and 3 show the evolution of the estimation error
as a function of the training data length N, for case 1 and
case 4 of Table II. Case 1 is one of the cases with the small-
est estimation error; case 4 is one of the cases with the larg-
est estimation error. The figures show that the estimation
error for d=1 stagnates, while for d�2, the estimation error
follows the scaling law of Eq. �14�.

TABLE I. Estimation error thresholds for the Rössler map. The
values given are the mean for ten data sets of 1000 points, and the
standard deviation.

Variable Threshold

x 4.12�10−2�2.66�10−3

y 4.49�10−2�4.76�10−3

z 1.19�10−2�1.41�10−3

TABLE II. Thresholds and estimation errors for local linear approximations of the Rössler map using
various primary ��a� and secondary ��b� observation functions. The threshold for each primary observation
function �a was computed from data sets of 1000 points as described in Sec. IV B 2. The functional relation
that is approximated is that of Eq. �11�, with increasing d. The estimation errors were computed using
100 000 training data points and 1000 test data points. All values shown are the mean for ten sets of data, and
the standard deviation as a percentage of the mean.

Case �a �b Threshold E�d=1� E�d=2�

1 x y 4.12�10−2�6.5% 1.55�10−2�12.8% 2.99�10−5�22.6%

2 y x 4.49�10−2�10.6% 6.81�10−3�13.3% 2.17�10−5�20.8%

3 x+y+z xy 5.91�10−2�9.0% 2.24�10−2�8.6% 7.03�10−3�14.1%

4 xy x+y+z 3.69�10−2�15.0% 1.29�10−2�10.5% 1.09�10−3�14.1%

5 z xy 1.19�10−2�11.8% 6.96�10−3�16.8% 8.44�10−4�17.0%

6 z x−y 1.19�10−2�11.8% 2.89�10−3�12.6% 2.95�10−4�20.0%

7 z x+y 1.19�10−2�11.8% 2.18�10−2�21.8% 5.89�10−4�17.8%

8 x yz 4.12�10−2�6.5% 2.00�10−2�11.6% 1.97�10−3�14.3%

9 x y+z 4.12�10−2�6.5% 5.95�10−3�10.9% 1.62�10−4�19.6%

10 x y−z 4.12�10−2�6.5% 1.88�10−2�11.3% 3.80�10−4�28.6%

11 y xz 4.49�10−2�10.6% 9.97�10−3�10.5% 1.55�10−3�8.5%

12 y x+z 4.49�10−2�10.6% 7.50�10−3�11.6% 2.22�10−4�19.6%

13 y x−z 4.49�10−2�10.6% 1.47�10−2�8.8% 1.14�10−3�16.7%
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C. Rössler system

1. Model and data

The second example is that of the Rössler system given
by Eq. �18�, with parameter values a=0.398, b=2, c=4, and
�=1. We define three cases of input coefficients: �a� 
x=1
and 
y =0, �b� 
x=0 and 
y =1, and �c� 
x=1 and 
y =1. By
studying these three cases, it is possible to confirm, as the
following results show, that if the inputs do not affect the
chosen secondary variables, or if the number of secondary
variables is insufficient, the relations do not hold: the estima-
tion error stops to decrease after reaching a certain level. For
each of these cases, several training and test time series were
generated with the same procedure as described in Sec.
IV B 1, by simulating the Rössler system of Eq. �18� with the
fourth-order Runge-Kutta method �see for example �24��
with an integration time step h=0.1.

For an integration step, in the fourth-order Runge-Kutta
equations, the input u�t� is evaluated at the beginning of the
step �u�tk�=uk�, at the middle of the step �u�tk+h /2��, and at

the end of the step �u�tk+h�=uk+1�. We assume that the input
u�t� is constant during one time step, so that u�tk+h /2�=uk.
Because of this integration method, in the discretized equa-
tions that evolve the state �xk ,yk ,zk� to �xk+1 ,yk+1 ,zk+1�, there
are input terms depending on uk in the three equations, and
input terms depending on uk+1 in the first equation �when

x=1� and in the second equation �when 
y =1�. Thus, the
generic form of the equations of dynamics of the discretized
system is as follows:

xk+1 = fx�xk,yk,zk,uk,uk+1� , �22a�

yk+1 = fy�xk,yk,zk,uk,uk+1� , �22b�

zk+1 = fz�xk,yk,zk,uk� . �22c�

2. Full state observation

We first consider the case of a full state observation. Since
the discretized equation, Eq. �22� involves two inputs uk and
uk+1, we need at least two state variables to uniquely deter-
mine the inputs uk and uk+1 as described in Sec. III A. We
have at our disposition only three state variables. We choose
two of these as the secondary variables, and the remaining
one as the primary variable. Thus, we consider the following
functional relations based on Eq. �8�:

xk+1 = Gx�yk+1,zk+1,xk,yk,zk� , �23a�

yk+1 = Gy�xk+1,zk+1,xk,yk,zk� , �23b�

zk+1 = Gz�xk+1,yk+1,xk,yk,zk� . �23c�

Here, all the functions of Eqs. �22� and �23� are polynomial
or rational functions of their arguments. We have noted in
Sec. IV C 1 that when 
x=1 and 
y =0, fy and fz do not
depend on the input uk+1. Therefore, the input uk+1 cannot be
uniquely determined unless x is chosen as one of the second-
ary variables; hence, Eq. �23a� does not hold in case �a�.
Similarly, when 
x=0 and 
y =1, fx and fz do not depend on
the input uk+1. Therefore, the input uk+1 cannot be uniquely
determined unless y is chosen as one of the secondary vari-
ables; hence, Eq. �23b� does not hold in case �b�.

Figure 4 shows the normalized estimation error of local
linear approximations of Gx, Gy, and Gz as a function of the
training data length N, while Table III gives the thresholds of
Eq. �16�, computed in the same way as for the Rösser map in
Sec. IV B 2.

From Fig. 4�a�, we see that for case �a�, for which 
x=1
and 
y =0, the estimation error of approximations of Gy and
Gz continues to decrease below the corresponding threshold
as N is increased, which indicates successful models using
only output data. However, the estimation error of an ap-
proximation of Gx does not decrease below the threshold as
N is increased. This was expected, since as mentioned above,
in case �a� using the variable xk+1 is indispensable in order to
uniquely determine the second output uk+1.

Similarly, Fig. 4�b� shows that for case �b�, for which

x=0 and 
y =1, the estimation error of an approximation of
Gz continues to decrease below the threshold, while Gy is
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FIG. 2. Normalized estimation error for a local linear approxi-
mation of the Rössler map with observation functions �a�x ,y ,z�
=x and �b�x ,y ,z�=y, as a function of the training data length N. For
each value of N, the mean and the standard deviation for ten sets of
training and test data are shown.
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FIG. 3. Normalized estimation error for a local linear approxi-
mation of the Rössler map with observation functions �a�x ,y ,z�
=xy and �b�x ,y ,z�=x+y+z, as a function of the training data
length N. For each value of N, the mean and the standard deviation
for ten sets of training and test data are shown.
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limited by the inability to uniquely determine the input uk+1
from the variables yk+1, zk+1, xk, yk, and zk. Nevertheless, note
that the estimation error for Gx is below the threshold but
does not follow the scaling law. This can be interpreted as
follows. In Fig. 4�b�, the estimation error for an approxima-
tion of Gx without using the variable zk+1 is also included.
The estimation error is similar to that of an approximation of
Gx. Thus, the information contained in zk+1 was not useful to
obtain information about the input uk; only the information
contained in yk+1 was useful. However, since yk+1 depends
not only on uk but also on uk+1, the input uk can be only
partially determined. Thus, the estimation of xk+1 is not ac-
curate due to the partial knowledge of uk.

Finally, Fig. 4�c� shows that for case �c�, for which 
x
=1 and 
y =1, the estimation error of approximations of Gx,
Gy, and Gz continues to decrease below the threshold as N is
increased. This indicates that the functional relations hold,
and that any two of the state variables xk+1, yk+1, and zk+1 can
be used to uniquely determine the two inputs uk and uk+1,
assuming also the knowledge of the previous state �xk ,yk ,zk�.

3. Observation functions

We now consider the case for which the state is observed
through two observation functions �a and �b. When choos-
ing the observation functions, it is important to ensure that
the main assumption of Sec. III B holds, i.e., when the
knowledge of the state �xk ,yk ,zk� is assumed, the secondary
observation �b�xk+1 ,yk+1 ,zk+1� uniquely determines the in-
puts, which here are uk and uk+1. Ignoring the fact that uk and
uk+1 are the same input at two different times, we need to
have at least two secondary observations. Here again, for
several choices of �a and �b, and for increasing d, we evalu-
ate the normalized estimation errors of local linear approxi-
mations of the functional relation of Eq. �11�.

We present here the results only for case �b� with 
x=0
and 
y =1; for cases �a� and �c�, the results were similar.

Table IV contains the definition of the pairs ��a ,�b� of
observation functions that were considered as well as the
thresholds computed in the same manner as that described in
Sec. IV B 2, and the normalized estimation errors obtained
for local linear approximations of Eq. �11� using training
time series with N=100 000 points. For cases 2 to 6, when
d�1 the estimation errors are at least one order below the
threshold; for cases 1 and 7, when d�2 the estimation errors
are one order below the threshold. As a representative ex-
ample, Fig. 5 shows the estimation error for case 5 as a
function of the training data length N. One can see that the
estimation error follows the scaling law of Eq. �14�.

D. Two coupled Rössler systems

Finally, we analyze a system that consists of two coupled
Rössler systems, the first one having additional input forces:
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FIG. 4. Normalized estimation error for a local linear approxi-
mation of the Rössler system as a function of the training data
length N, with parameters �a� 
x=1 and 
y =0, �b� 
x=0 and 
y

=1, and �c� 
x=1 and 
y =1. For each value of N, the mean and the
standard deviation for ten sets of training and test data are shown.

TABLE III. Estimation error thresholds for the Rössler system.
The values given are the mean for ten data sets of 1000 points, and
the standard deviation.

Variable Input coefficients Threshold

x 
x=1, 
y =0 3.71�10−2�1.88�10−3

y 
x=1, 
y =0 2.33�10−3�9.44�10−5

z 
x=1, 
y =0 6.18�10−3�3.67�10−4

x 
x=0, 
y =1 2.32�10−3�1.60�10−4

y 
x=0, 
y =1 4.19�10−2�2.79�10−3

z 
x=0, 
y =1 2.13�10−4�9.94�10−6

x 
x=1, 
y =1 3.29�10−2�2.49�10−3

y 
x=1, 
y =1 3.83�10−2�3.62�10−3

z 
x=1, 
y =1 5.90�10−3�4.60�10−4
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ẋ1 = − �1y1 − z1 + u�t� , �24a�

ẏ1 = �1x1 + a1y1, + ��y2 − y1� , �24b�

ż1 = b1 + z1�x1 − c1� , �24c�

ẋ2 = − �2y2 − z2, �24d�

ẏ2 = �2x2 + a2y2 + ��y1 − y2� , �24e�

ż2 = b2 + z2�x2 − c2� , �24f�

with parameter values a1=a2=0.22, b1=b2=0.1, c1=c2=8.5,
�1=0.98, �2=1.03, and a coupling parameter �=0.1. With
the same procedure as in Sec. IV B 1, time series for the two
coupled Rössler systems were generated by using the fourth-
order Runge-Kutta method with an integration step h=0.1.

We consider the two coupled systems as not one system
but two separate systems. The state variables of the first
Rössler system are x1, y1, and z1, and the external inputs are

u and y2. The state variables of the second Rössler system
are x2, y2, and z2, and the external input is y1.

However, for discretized versions of these systems, the
external inputs are different, as shown below. Consider a
discretization using the fourth-order Runge-Kutta method.
As in Sec. IV C 1, we assume that the input is constant dur-
ing one time step. Equation �24� can be inserted into the
Runge-Kutta equations in order to obtain discretized equa-
tions of the two coupled systems. The discretized equations
are fourth-order approximations. Reproducing the complete
set of equations here would take considerable space; how-
ever, for the second Rössler system, we succinctly write the
general form of these equations:

x2,k+1 = fx2
�x2,k

0 ,y2,k
1 ,z2,k

1 ,y1,k
2 ,x1,k

3 ,z1,k
4 ,uk

4� , �25a�

y2,k+1 = fy2
�y2,k

0 ,x2,k
1 ,y1,k

1 ,z2,k
2 ,x1,k

2 ,z1,k
3 ,uk

3� , �25b�

z2,k+1 = fz2
�z2,k

0 ,x2,k
1 ,y2,k

2 ,y1,k
3 ,x1,k

4 � , �25c�

where superscripts have been added as follows. Note that the
functions fx2

, fy2
, and fz2

are polynomials. When the terms of
the polynomials are ordered according to the increasing
power of h, the superscript of each variable in the right-hand
side of Eq. �25� is the order of the first term in which this
variable appears. For example, y1,k first appears in a term
multiplied by h2 in the function fx2

, in a term multiplied by h
in the function fy2

, and in a term multiplied by h3 in the
function fz2

.
Equation �25� shows that the inputs of the discretized sec-

ond Rössler system are y1,k, x1,k, z1,k, and uk. We cannot in
general uniquely determine four inputs from the next values
of the three state variables x2, y2, and z2, or from observables
that depend on them, since this requires at the very least four
state variables. However, if we consider a second-order ap-
proximation in h, Eq. �25� shows that only y1,k and x1,k are
inputs of the second Rössler system.

In order to verify this approach, we consider output-only
models that rely on the assumption of having only two inputs
y1,k and x1,k, and we identify, from the data, local linear
approximations of the following three functional relations:

TABLE IV. Thresholds and estimation errors for local linear approximations of the Rössler system using
various primary ��a� and secondary ��b� observation functions, for input coefficients 
x=0 and 
y =1. The
threshold for each primary observation function �a was computed from data sets of 1000 points as described
in Sec. IV B 2. The functional relation that is approximated is that of Eq. �11�, with increasing d. The
estimation errors were computed using 100 000 training data points and 1000 test data points. All values
shown are the mean for ten sets of data, and the standard deviation as a percentage of the mean.

Case �a �b Threshold E�d=1� E�d=2�

1 z �xy ,x−y� 2.13�10−4�4.7% 2.09�10−4�19.4% 2.12�10−5�15.0%

2 x+y+z �xy ,x−y� 2.55�10−2�7.4% 4.61�10−4�13.0% 4.02�10−4�5.5%

3 x+y+z �xy+z ,yz+x� 2.55�10−2�7.4% 4.03�10−4�6.2% 3.69�10−4�6.1%

4 xy+z (yz+x2 , �x+y�2) 3.58�10−2�4.9% 1.29�10−3�12.2% 9.12�10−4�7.2%

5 x+y+z (yz+x2 , �x+y�2) 2.55�10−2�7.4% 7.67�10−4�11.3% 5.31�10−4�7.1%

6 xz+y �xy ,x−y� 1.51�10−2�10.8% 3.35�10−4�11.0% 2.39�10−4�4.3%

7 z (yz+x2 , �x+y�2) 2.13�10−4�4.7% 2.99�10−4�19.5% 2.53�10−5�19.3%
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FIG. 5. Normalized estimation error for a local linear approxi-
mation of the Rössler system with observation functions
�a�x ,y ,z�=x+y+z and �b�x ,y ,z�= (yz+x2 , �x+y�2), as a function
of the training data length N. The input parameters were 
x=0 and

y =1. For each value of N, the mean and the standard deviation for
ten sets of training and test data are shown.
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x2,k+1 = Gx2
�y2,k+1,z2,k+1,x2,k,y2,k,z2,k� ,

y2,k+1 = Gy2
�x2,k+1,z2,k+1,x2,k,y2,k,z2,k� ,

z2,k+1 = Gz2
�x2,k+1,y2,k+1,x2,k,y2,k,z2,k� .

These functional relations are the same as those for the
Rössler system in Eq. �23�. For comparison, we also identify
local linear approximations for the functions fx2

, fy2
, and fz2

,
in which we include variables with increasing order in h. For
example, fx2

1 is a first-order approximation of fx2
depending

only on the variables x2,k, y2,k, and z2,k.
The normalized estimation error as a function of the train-

ing data length N is shown in Fig. 6. Figure 6�b� shows that
the local linear approximation using only output data to es-
timate y2 has an estimation error that is smaller than that of a
first-order approximation of fy2

, but larger than that of a
second-order approximation of fy2

. This was expected since
the second-order approximation depends on both y1,k and
x1,k, which cannot be uniquely determined from the two sec-
ondary state variables, x2,k+1 and z2,k+1.

In Figs. 6�a� and 6�c� we observe that, for an estimation of
x2 or z2, local linear approximations using only output data
outperform local linear approximations of the functions fx2
and fz2

. This is contrary to our expectation. A possible expla-
nation is that the local linear approximation did not only
model the relations between primary and secondary variables
using the equations for the second Rössler system, but also
reconstructed part of the dynamics of the first Rössler sys-
tem.

V. SUMMARY AND DISCUSSIONS

We approached the problem of building models of input-
output systems without any knowledge of the input. After
examining existing embedding theorems, we proposed some
theoretical arguments for the existence of a functional rela-
tion between delays of multivariate observations. The main
assumptions are that the number of inputs is small and that
the inputs can be uniquely determined by the current state
and some of the observations at the next discrete time. Thus,
multivariate observations are split into primary observations
and secondary observations. The secondary observations are
used for obtaining information about the input, while delays
of the primary observations are used for obtaining informa-
tion about the state of the system.

We first studied two examples, namely, a discrete map
that is a discretized version of the Rössler system by using
finite differences, and the Rössler system simulated by the
Runge-Kutta method. We showed that, when compared to
what they should be if the inputs could not be taken account
of in the model, the estimation errors obtained for local lin-
ear models using only observed data are smaller by at least
close to one order. Furthermore, the estimation errors follow
the classical scaling law E=O�N−2/D�. This indicates that
successful models can be built by using only output data. A
condition for this is that the secondary observations are func-
tions of the states that are affected by the input.

An important application of this method is the analysis of
coupled systems or complex networks. We can partition such
a large system into several subsystems and study them sepa-
rately. In this way, models based on the deterministic dynam-
ics of each subsystem can be built, which would not be pos-
sible for the whole system because of its high dimensionality.

In order to verify the feasibility of this approach for the
case of continuous-time systems, we studied the example of
two coupled Rössler systems. The results indicate that in the
case of a noiseless time series originating from these two
continuous-time coupled systems, we cannot fully decouple
the two subsystems to obtain a model of one of the two
subsystems only. Although the two subsystems are coupled
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FIG. 6. Normalized estimation error for a local linear approxi-
mation of the two coupled Rössler systems as a function of the
training data length N. The estimated variables are �a� x2, �b� y2, and
�c� z2. For each value of N, the mean and the standard deviation for
ten sets of training and test data are shown.
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only by one variable when viewed as continuous-time sys-
tems, the discrete equations controlling the evolution of a
time series originating from these subsystems have more
coupling terms. In the case of a discretization with the
Runge-Kutta method, it was shown that because of the
continuous-time nature of the system, in the discretized
equations the inputs of the considered subsystem include all
the state variables of the other subsystem. This dependence
originates from the fact that information flows through each
variable in the continuous-time equations. Despite this, the
effect of some of the inputs on the equations of the consid-
ered subsystem is negligible; therefore, the proposed rela-
tions hold approximately.

Only noiseless time series were used in this paper. The
effect of observational noise is reported elsewhere �25�. For
noisy observations, the dependence on the additional vari-
ables will be hidden by the noise since these variables appear
in the discretized equations in terms of higher order in the
integration time h. In such a case, we can expect to separate
the dynamics of the two subsystems since the noise hides the
flow of information from the variables of one subsystem to
the other.

It should be noted that the two proposed functional rela-
tions are nonpredictive relations; thus, they cannot be used to

predict the future behavior of the system. However, since
they model the dynamics of the system, they have other ap-
plications such as change detection and noise reduction. The
application to change detection is reported elsewhere �25�.
Also, preliminary results indicate that for noisy data, the es-
timates of the primary observations are less noisy than the
original time series; thus, noise in the primary observations
can be reduced.

ACKNOWLEDGMENTS

The authors would like to thank Tim Sauer and David
Broomhead for their encouragement. The authors also thank
Yoshito Hirata and Tomonori Nagayama for valuable discus-
sions. The first author acknowledges support from the Min-
istry of Education, Culture, Sports, Science and Technology
of Japan. This study was partially supported by Grant-in-Aid
type S for Scientific Research from MEXT of Japan �Grant
No. 20226011, Yozo FUJINO� and by Grant-in-Aid for Sci-
entific Research on Priority Areas—Higher-Order Brain
Functions—from MEXT of Japan �Grant No. 17022012, Ka-
zuyuki AIHARA�.

�1� N. H. Packard, J. P. Crutchfield, J. D. Farmer, and R. S. Shaw,
Phys. Rev. Lett. 45, 712 �1980�.

�2� F. Takens, Lect. Notes Math. 898, 366 �1981�.
�3� T. Sauer, J. A. Yorke, and M. Casdagli, J. Stat. Phys. 65, 579

�1991�.
�4� H. D. I. Abarbanel, Analysis of Observed Chaotic Data

�Springer-Verlag, Berlin, 1996�.
�5� H. Kantz and T. Schreiber, Nonlinear Time Series Analysis

�Cambridge University Press, Cambridge, 1999�.
�6� M. Casdagli, S. Eubank, J. D. Farmer, and J. Gibson, Physica

D 51, 52 �1991�.
�7� M. Casdagli, in Nonlinear Modeling and Forecasting, edited

by M. Casdagli and S. Eubank �Addison-Wesley, Reading,
1992�, Vol. XII.

�8� J. Stark, J. Nonlinear Sci. 9, 255 �1999�.
�9� J. Stark, D. S. Broomhead, M. E. Davies, and J. Huke, J.

Nonlinear Sci. 13, 519 �2003�.
�10� J. Stark, D. S. Broomhead, M. E. Davies, and J. Huke, Non-

linear Anal. Theory, Methods Appl. 30, 5303 �1997�.
�11� J. Stark, Philos. Trans. R. Soc. London, Ser. A 358, 41 �2000�.
�12� L. Cao, A. Mees, and K. Judd, Physica D 121, 75 �1998�.
�13� S. P. Garcia and J. S. Almeida, Phys. Rev. E 72, 027205

�2005�.

�14� Y. Hirata, H. Suzuki, and K. Aihara, Phys. Rev. E 74, 026202
�2006�.

�15� L. A. Aguirre and C. Letellier, J. Phys. A 38, 6311 �2005�.
�16� S. Boccaletti, D. L. Valladares, L. M. Pecora, H. P. Geffert, and

T. Carroll, Phys. Rev. E 65, 035204�R� �2002�.
�17� M. R. Muldoon, D. S. Broomhead, J. P. Huke, and R. Hegger,

Dyn. Stab. Syst. 13, 175 �1998�.
�18� H. Whitney, Ann. Math. 37, 645 �1936�.
�19� K. Judd and A. Mees, Physica D 120, 273 �1998�.
�20� J. D. Farmer and J. J. Sidorowich, Phys. Rev. Lett. 59, 845

�1987�.
�21� M. Casdagli, Physica D 35, 335 �1989�.
�22� O. E. Rössler, Phys. Lett. 57A, 397 �1976�.
�23� C. Letellier, S. Elaydi, L. A. Aguirre, and A. Alaoui, Physica D

195, 29 �2004�.
�24� W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flan-

nery, Numerical Recipes in C��: The Art of Scientific Com-
puting, 2nd ed. �Cambridge University Press, Cambridge,
2002�.

�25� E. Monroig, Ph.D. thesis, University of Tokyo, 2009.
�26� It also preserves the product structure of M�N, but we do

not use this in the present discussion.

MONROIG, AIHARA, AND FUJINO PHYSICAL REVIEW E 79, 056208 �2009�

056208-12


